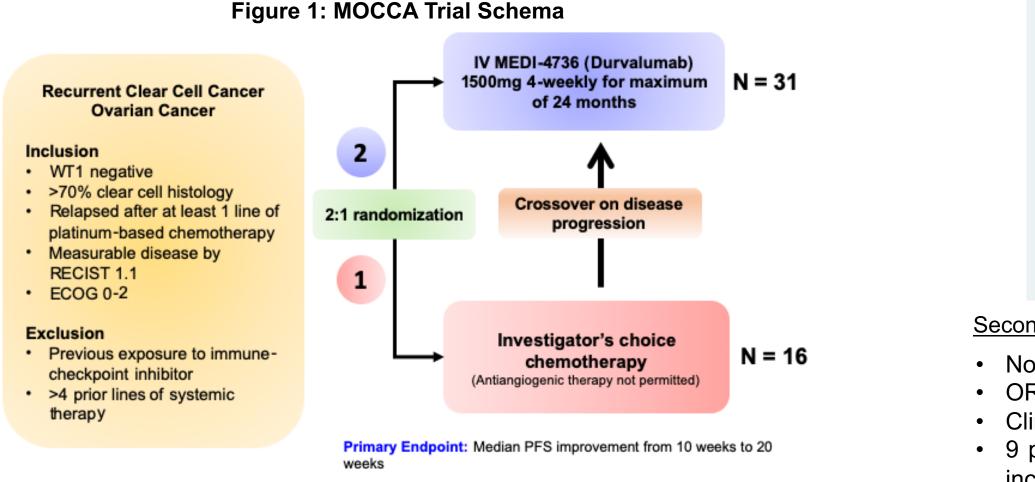


A Multicenter Phase II Randomized Trial of Durvalumab (D) Versus Physician's Choice Chemotherapy (PCC) in Patients (pts) with Recurrent **Ovarian Clear Cell Carcinoma (MOCCA/ APGOT-OV2/ GCGS-OV3/GCIG)**

David SP Tan^{1,2,3}, Chel Hun Choi⁴, Natalie YL Ngoi¹, Haoyang Sun⁶, Valerie Heong⁷, Samuel GW Ow¹, Wen Yee Chay⁸, Hee Seung Kim⁵, Geraldine Goss⁹, Jeffrey C Goh^{10,11}, Vilianty¹, Bee Choo Tai^{3,6}, Diana GZ Lim¹², Nivashini Kaliaperumal¹³, Veonice B Au¹³, John E Connolly^{13,14}, Jae-Weon Kim⁵, Michael Friedlander^{15,16}, Kidong Kim¹⁷ David SP Tan^{1,2,3}, Chel Hun Choi⁴, Natalie YL Ngoi¹, Haoyang Sun⁶, Valerie Heong⁷, Samuel GW Ow¹, Wen Yee Chay⁸, Hee Seung Kim⁵, Geraldine Goss⁹, Jeffrey C Goh^{10,11}, Vilianty¹, Bee Choo Tai^{3,6}, Diana GZ Lim¹², Nivashini Kaliaperumal¹³, Veonice B Au¹³, John E Connolly^{13,14}, Jae-Weon Kim⁵, Michael Friedlander^{15,16}, Kidong Kim¹⁷ ¹Department of Haematology-Oncology, National University Cancer Institute, Singapore, ²Cancer Science Institute, Singapore, ³Yong Loo Lin School of Medical Oncology, Tan Tock Seng Hospital Singapore, ⁴Samsung Medical Center, Republic of Korea, ⁶ Department of Obstetrics and Gynecology, Seoul National University of Singapore, ⁴Samsung Medical Oncology, Tan Tock Seng Hospital Singapore, ⁴Samsung Medical Oncology, National University of Singapore, ⁴Samsung Medical Center, Republic of Korea, ⁶ Saw Swee Hock School of Public Health, National University of Singapore, ⁴Samsung Medical Oncology, Tan Tock Seng Hospital Singapore, ⁸Division of Medical Oncology, National University of Singapore, ⁹Box Hill Hospital, Singapore, ⁴Samsung Medical Center, Republic of Korea, ⁶Saw Swee Hock School of Public Health, National University of Singapore, ⁹Box Hill Hospital, Singapore, ¹⁰Institute of Republic of Korea, ⁶Saw Swee Hock School of Public Health, National University Actional University of New South Wales, Australia, ¹⁰Samul Value School University of New South Wales, Australia, ¹⁰Samul Value School University and Pasatralia, ¹⁰Samul Value School University of New South Wales, Australia, ¹⁰Samul Value School University of New South Wales, Australia, ¹⁰Samul Value School University and Pasatralia, ¹⁰Samul Value School Universi Victoria, Australia, ¹⁰Royal Brisbane & Women's Hospital, Queensland, Australia, ¹¹University of New South Wales, Australia, ¹²Department of Pathology, National University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁴Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Seoul National University, TX, USA, ¹⁵Prince of Wales, Australia, ¹²Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁴Institute of Rolecular and Cell Biology, National University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Seoul National University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁶The Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁶The Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince of Wales, Australia, ¹⁷Institute of Biomedical Studies, Baylor University, TX, USA, ¹⁵Prince, ¹⁴Institute, ¹⁵Prince, ¹⁵Prince,


BACKGROUND

- The optimal treatment of recurrent ovarian clear cell carcinoma (rOCCC) remains unknown
- Prior data suggested rOCCC is a chemoresistant disease that may respond to PD-1/ PD-L1 immune checkpoint inhibition.
- We aimed to determine the efficacy of D versus PCC in pts with rOCCC.

METHODS

Trial Design

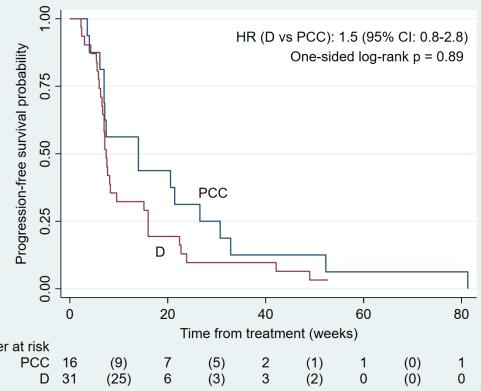
- This is a multicentre, open-label, randomised phase 2 trial, 9 academic centers across Singapore, South Korea and Australia (Figure 1).
- Eligible patients were randomly assigned (2:1), using dynamic block randomization with block size of 6, and stratification by ECOG PS, to receive D (1500mg on day 1, in 28-day cycles) or PCC until disease progression, intolerable toxicity or withdrawal of consent
- This trial is registered at Clinicaltrials.gov: NCT03405454

Int J Gynecol Cancer. 2020 Aug;30(8):1239-1242. doi: 10.1136/ijgc-2020-001604

Primary Endpoint: PFS following D or PCC. Radiological disease progression was evaluated by RECIST 1.1 criteria.

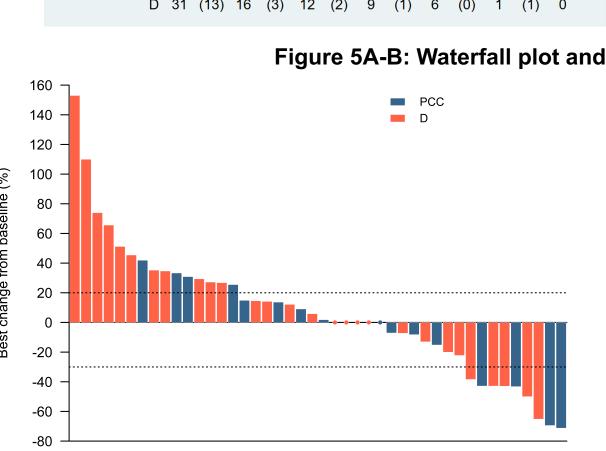
Secondary Endpoints:

- •Objective response rate (ORR) of D or PCC in rOCCC.
- •Overall survival (OS) of D or PCC in rOCCC.
- •Adverse event profile of D in rOCCC.
- •Effect of D or PCC in health-related quality of life (QoL) using validated tools.


PATIENT CHARACTERISTICS

• Between 7 Nov 2017 and 17 Feb 2020, 57 pts were assessed for eligibility, of whom 47 were randomly assigned to treatment with D or PCC (**Table 1**).

Table 1: Baseline patient demographics and clinical characteristics

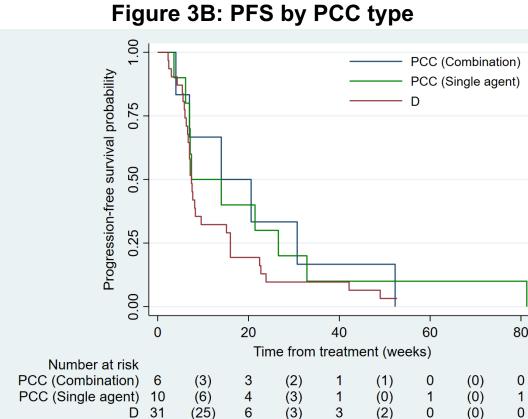

	PCC (n = 16)	D (n = 31)
Age (Years)		
Median [Range]	56 [36 – 81]	56 [35 – 70]
Ethnicity		
Caucasian	1 (6.2%)	6 (19.4%)
Chinese	8 (50.0%)	9 (29.0%)
Indian	1 (6.2%)	0 (0%)
Korean	5 (31.2%)	13 (41.9%)
Malay	0 (0%)	1 (3.2%)
Other	1 (6.2%)	2 (6.5%)
Country of trial		
Australia	2 (12.5%)	7 (22.6%)
Korea	5 (31.2%)	12 (38.7%)
Singapore	9 (56.2%)	12 (38.7%)
ECOG		
0	10 (62.5%)	17 (54.8%)
1	6 (37.5%)	14 (45.2%)
Number of prior treatment lines		
1	12 (75.0%)	22 (71.0%)
2	2 (12.5%)	7 (22.6%)
3	2 (12.5%)	1 (3.2%)
4	0 (0%)	1 (3.2%)

Primary Endpoint Analysis

Number at risk

Secondary Endpoint Analysis

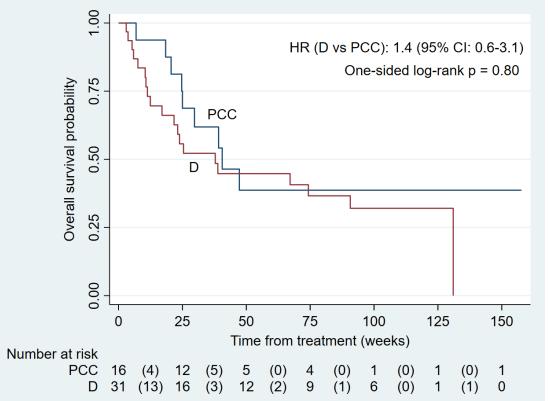
RESULTS


EFFICACY

• At the data-cut off date of 10 Jan 2022, the median duration of follow-up was 83.0 weeks (interquartile range (IQR) 54.1-97.0) for PCC and 107.0 weeks (IQR 82.7-116.4) for D.

No difference was observed in median PFS between D and PCC was observed (Figure 3A). Median PFS was 7.4 weeks (IQR: 6.0—16.0) in the D group and 14.0 (IQR: 7.0—28.6) in the PCC group (HR 1.5 [95% CI 0.8-2.8], one-sided log-rank p = 0.89).

On unplanned subgroup analyses, median PFS was longest amongst patients receiving platinum-based combination PCC (Figure 3 median PFS was 17.3 weeks (7.0-30.7) versus 10.7 weeks (7.0-26.6) for platinum-based combination versus single agent PCC.


Figure 3A: PFS of D versus PCC

No difference in median OS was observed between D and PCC (Figure 4).

• ORR was 10.7% in pts randomized to D and 18.8% in those randomized to PCC (p = 0.884) (Figure 5, Table 2). • Clinical benefit rate (CR/PR/SD for ≥16weeks) was similar for PCC (37.5%) and D (32.1%) (p = 0.756) (Figure 5, Table 2) • 9 pts on PCC crossed over to receive D, with 2 of the 8 evaluable pts achieving partial response (PR). When crossover D pts were included, ORR to D was 13.9% (5/36) (Table 2).

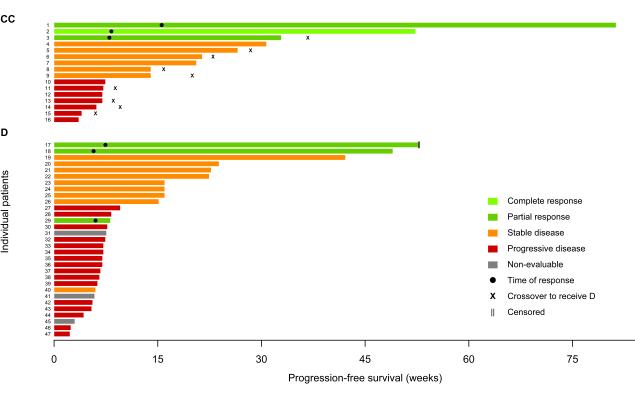

Figure 4: OS of D versus PCC

Table 2: Treatment response by RECIST1.1

	PCC (n = 16)	D (primary) (n = 31)	D (crossov er) (n = 9)	D (all) (n = 40)	Differ (D prima (95%
CR	1 (6.2%)	0 (0%)	0 (0%)	0 (0%)	-
PR	2 (12.5%)	3 (9.7%)	2 (22.2%)	5 (12.5%)	-
SD	6 (37.5%)	9 (29.0%)	2 (22.2%)	11 (27.5%)	-
NE	0 (0%)	3 (9.7%)	1 (11.1%)	4 (10.0%)	-
ORR (CR + PR) NE excluded	3 (18.8%)	3 (10.7%)	2 (25.0%)	5 (13.9%)	-8.0% (- 14.3 (P = 0
CBR (CR/ PR/ SD≥ 16 weeks) NE excluded	6 (37.5%)	9 (32.1%)	-	11 (30.6%)	-5.4% (- 24.0 (P = 0

Figure 5A-B: Waterfall plot and swimmer's plot of best response to D or PCC

D

SAFETY

- Frequency of adverse events (AEs) across all grades was 68.8% for PCC and 38.7% for D.
- Grade 3/4 AEs were observed in 37.5% of PCC pts and 9.7% of D pts. No treatment-related grade 5 toxicities were observed.

PCC

_
)

- % CI)
- -(-30.3%, 4.3%) : 0.884) (-34.7%, .0%) 0.756)

	(n =	(n = 16)		(n = 31)	
	Grade 3/4	All grades	Grade 3/4	All grades	
Anemia	2 (12.5%)	3 (18.8%)	0	0	
Neutropenia	· · · · ·	5 (31.2%)	0	1 (3.2%)	
Thrombocytopenia	1 (6.2%)	3 (18.8%)	0	1 (3.2%)	
Hyperthyroidism	0	0	0	2 (6.5%)	
Hypothyroidism	0	0	0	1 (3.2%)	
Abdominal pain	0	2 (12.5%)	0	1 (3.2%)	
Constipation	0	2 (12.5%)	0	0	
Diarrhea	0	0	0	1 (3.2%)	
Gastritis	0	1 (6.2%)	0	0	
Mucositis oral	1 (6.2%)	2 (12.5%)	0	0	
Nausea	0	3 (18.8%)	0	1 (3.2%)	
Vomiting	0	1 (6.2%)	0	1 (3.2%)	
Edema limbs	0	1 (6.2%)	0	1 (3.2%)	
Fatigue	0	6 (37.5%)	0	7 (22.6%)	
Fever	0	1 (6.2%)	0	0	
Allergic reaction	0	1 (6.2%)	0	0	
Alanine	0	0	0	1 (3.2%)	
aminotransferase					
increased					
Anorexia	0	1 (6.2%)	0	1 (3.2%)	
Aspartate	0	0	0	1 (3.2%)	
aminotransferase					
increased					
Hypokalemia	0	0	1 (3.2%)	2 (6.5%)	
Hypomagnesemia	0	0	1 (3.2%)	1 (3.2%)	
Hyponatremia	0	0	1 (3.2%)	2 (6.5%)	
Serum amylase	0	0	1 (3.2%)	1 (3.2%)	
increased					
Arthralgia	0	0	0	1 (3.2%)	
Back pain	0	1 (6.2%)	0	0	
Lethargy	0	1 (6.2%)	0	0	
Tremor	0	0	0	1 (3.2%)	
Proteinuria	0	0	0	1 (3.2%)	
Pneumothorax	1 (6.2%)	1 (6.2%)	0	0	
Dry skin	0	1 (6.2%)	0	0	
Nail pigmentation	0	2 (12.5%)	0	0	
Pruritus	0	0	0	1 (3.2%)	
Rash	0	1 (6.2%)	1 (3.2%)	2 (6.5%)	
Seborrheic keratosis	0	1 (6.2%)	0	0	
Skin pigmentation	0	1 (6.2%)	0	0	

CONCLUSIONS

- No significant differences in PFS, ORR or CBR were observed between D and PCC treatment in rOCCC.
- Treatment with D was associated with less grade 3-4 adverse events.
- Correlative translational analyses to elucidate predictive biomarkers of response and resistance are ongoing.

ACKNOWLEDGEMENTS

- We are deeply grateful to the patients who participated in this study, their families and the trial coordinators that supported this study.
- We thank the members of the GCIG Rare Tumor Committee for their input on this study.
- This study is funded by the Ministry of Health National Medical Research Council Singapore (NMRC/MOHIAFCat1/0061/2016) and AstraZeneca.